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Abstract 
In order to stabilize the inherent unstable system like the inverted pendulum on a 
cart, severe judgment of situation is required. Accordingly, it can be expected that  
human operators exhibit complex behavior intermittently. This paper investigated 
the identification of the individual difference of human operator's behavior from 
time series data by using fuzzy inference and acquired individual skill of human 
operator. It also investigated the chaotic behavior of human operator and the 
formation of a complex system in the learning process of human operators with 
objects difficult to control. The operators in the experiment are skilled to some 
extent in stabilizing the inverted pendulum by training, and the data of ten trials per 
person were successively taken for an analysis, where the waveforms of pendulum 
angle and cart displacement were recorded. The maximum Lyapunov exponents 
were estimated from experimental time series data against embedding dimensions. 
It was found that the rules identified for a fuzzy controller from time series data of 
each operator showed well the human-generated decision-making characteristics 
with the chaos and the large amount of disorder and the individual difference of 
chaotic and complex human operation can be identified with fuzzy inference. 

Key words: Skill, Human's Dexterity, Identification, Fuzzy Control, Chaos, 
Entropy, Individuality, Estimated Degree of Freedom of Motion, 
Estimated Amount of Disorder, Time Series Data, Inverted Pendulum  

 

1. Introduction 

There is an infinite variety of motions ranging from our daily activities to the 
exceptional movement of an athlete or a musician(1). Based on his extensive observation of 
child growth, Gesell (1945) stated some empirical rules. In particular, he noted that the 
development of motion progresses from a generally integrated state to an individualized 
state in which individual sections have specialized functions. He also noted that the number 
of degrees of freedom of the motion increases with development, and that periods of 
unstabilization and stabilization are repeated to advance development by taking advantage 
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of such fluctuations well. Finally, he observed that chaos plays a very important role in 
motion(1). The human process of learning motion can also be studied by focusing on the 
degrees of freedom. When a person who normally writes with his or her right hand (i.e., 
their dominant hand) is asked to write with the left hand (i.e., their non dominant hand), the 
number of degrees of freedom of each joint is initially fixed; but, after training, each joint 
moves according to a peculiar phase relationship after training (Newell & Van Emmerik, 
1989). This implies that we are rigid when we attempt a new motion, but become more 
relaxed after getting accustomed to it (1). 

Machinery and human beings are absolutely of a different nature at the present stage, 
but most research work on man-machine systems has dealt with the linear characteristics of 
human behavior (2). As an example, many studies on control systems for stabilizing the 
inverted pendulum as an inherently unstable system have been presented. These studies 
focus on the linear characteristics of human behavior. There seem to be few studies and a 
number of unknowns regarding both the nonlinear characteristics of human behavior in an  
inherently unstable man-machine system as well as the learning process of human operators 
with objects difficult to control (3)- (4). 

In order to stabilize an unstable system such as the inverted pendulum, strict judgment 
of the situation is required. Accordingly, it can be expected that the human operators exhibit  
complex behaviors or contingencies, that is, the mixture of regular and random things 
intermittently(5)(6).   

In the author's previous papers(6) - (11), it was found that there are various nonlinear 
features in the stabilizing behavior of a human operator. In this study, the definition of 
nonlinear stability means that an inverted pendulum does not fall for 60 consecutive 
seconds. The behavior during stabilizing control of an inverted pendulum by a human 
operator exhibits a random-like or limit-cycle like fluctuation, and the stabilizing control by 
the human operator is robust against the disturbance. This may be because the 
limit-cycle-like fluctuation with a digital computer control, which means lineally unstable, 
is more robust against the disturbance than the lineally stable fluctuation according to the 
previous experiments(6) - (11), (13) - (19). The limit cycle was very stable in the sense of 
nonlinearity, which means it is robust against the disturbance. It was found that the 
estimated degree of freedom of motion composed of a human operator and a control object 
increases and the estimated amount of disorder decreases with an increase of trials in the 
experiment.  

Furthermore, it was shown that the neural network controller identified from time series 
data of each trial of several operators exhibits the human-generated decision-making 
characteristics with the chaos and a large amount of disorder. It was also confirmed that the 
estimated degrees of freedom of motion increases and the estimated amount of disorder 
decreases with an increase of trials or proficiency (20)(21).  

This paper investigates the identification of the chaotic characteristics of human 
operation from the experimental time series data by utilizing fuzzy inference. It shows how 
to construct rules automatically for a fuzzy controller of each trial of each human operator. 
It tries to acquire the individual skill of each operator. Human operators in an experiment 
were trained so that they were skilled to some extent in stabilizing the pendulum by 
training, and the data of ten trials per person were successively taken for an analysis.The 
entropy is estimated from the time series data as a measure of the amount of disorder in a 
system, and the degrees of freedom of the motion are estimated by the dimensions when 
curves of the largest Lyapunov exponents are saturated against the embedding dimensions 
for quantifying the proficiency.  
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2. Chaos-Entropy Analysis of Human Operator's Skill during Stabilizing 
Control of an Inverted Pendulum on a Cart  

2.1 Trials of stabilizing control of an inverted pendulum on a cart by a human 
operator 

Figure 1 shows the experimental situation. The inverted pendulum is mounted on a cart 
which can move along the line of a sliding rail of limited length while it is hinged to the cart 
so that it rotates in one plane. A human operator manipulates the cart directly by hand. 
Although it takes some time and is needed intensive training for a human operator to 
succeed in stabilizing the pendulum for 60 seconds, it becomes less difficult after the first 
success of stabilizing.  

Human operators in an experiment were trained so that they were skilled to some extent 
in stabilizing the pendulum by training, and the data of ten trials per person were 
successively taken for an analysis. The angle that the pendulum makes with the vertical axis 
and the displacement of the cart were measured, from which the derivatives and the force 
that moves the cart can be derived.  

 

  
        Fig.1 Stabilizing control of an inverted pendulum. 
 

2.2 Diagnosis of amount of disorder by entropy analysis 

 In order to stabilize an unstable system such as the inverted pendulum, strict judgment 
of the situation is required. Accordingly, it can be expected that a human operator exhibits a 
complex behavior intermittently. 

Consider a hypothetical statistical system for which the outcome of a certain measurement 
must be located on a unit interval. If a line is subdivided into N subintervals, we can associate a 
probability pi with the i- th subinterval containing a particular range of possible outcomes. The 
entropy of the system is then defined as   
 

∑
=
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log       

This quantity may be interpreted as a measure of the amount of disorder in the system or as the 
information necessary to specify the state of the system. If the subintervals are equally probable so 
that pi = 1/N for all i, then the entropy reduces to S = log e N, which can be shown to be the 
maximum value. Conversely, if the outcome is known to be in a particular subinterval, then S = 0 is 
the minimum value. When S = log e N, the amount of further information needed to specify the 
result of a measurement is at a maximum, and when S = 0 no further information is required (22), (23).  
We applied this formulation to the time series data by establishing N bins or subintervals of the unit 
interval into which the value of time series data may fall. We define S as the net entropy calculated 
with Eq.(1) and S/ (log e N) as the entropy ratio (10) (17) (18).  
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2.3 Diagnosis of Chaotic Dynamics by entropy analysis 

   It is necessary to analyze time series data for detecting chaotic dynamics and 
characterizing it quantitatively when the model of a whole system is unknown. Methods for 
dynamical analysis of time series data are still developing, but a common method is a two-step 
process: (1) reconstruction of the strange attracter of the unknown dynamical system from the time 
series, and (2) determination of certain invariant quantities of the system from the reconstructed 
attracter.  It is possible to obtain the dynamics from a single time series without reference to other 
physical variables(22) - (24). This concept was given a rigorous mathematical basis by Takens(25) and 
Mane (26).  

Since the attracter dimension is unknown for time series data and the required embedding 
dimension M is unknown, it is important that the reconstruction be embedded in a space of 
sufficiently large dimension to represent the dynamics completely. Thus, the dimension of the 
embedding space is increased one by one; the attractor is reconstructed and its largest Lyapunov 
exponent is calculated. The process is continued until the largest Lyapunov exponent saturates 
against the embedding dimensions and a dimension, that is, the degrees of freedom of the system 
behavior, is estimated. The largest Lyapunov exponent can be obtained from a time series data 
using an algorithm given by Wolf et al.(27). The Lyapunov exponent can be used to obtain the 
measure of the sensitivity upon initial conditions. This measure of sensitivity is characteristic of 
chaotic behavior. If the Lyapunov exponent is positive, nearby trajectories diverge, and so the 
evolution is sensitive to initial conditions and therefore chaotic.  

Consider the time series data x(t1), x(t2), - - - - -. Successive points in the phase space formed 
from time-delay coordinates can be written as vectors Xi：   
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where the symbol τ denotes the time delay and the symbol m denotes the embedding 
dimension.  

The choice of an appropriate delay τ is important to the success of the reconstruction. 
If τ is too short then the coordinates are almost equal to each other, and the reconstruction 
is useless. If τ is too large then the coordinates are so far apart as to be uncorrelated.  If 
the system has some rough periodicity, then a value comparable to but somewhat less than 
that period is typically chosen. Because there is no simple rule for choosing τ in all cases, 
some times τ is adjusted until the results seem satisfactory. The time τ is typically some 
multiple of the spacing between the time series points (22). We chose seven times the spacing 
between the time series points, that is, 7 x 0.0293 [s], as the value of τ because the 
calculated largest Lyapunov exponents were not too sensitive to τ, and because the curves 
of the largest Lyapunov exponents against embedding dimensions were smooth within a 
reasonable range τ, whereas the dominant period of the experimental time series data was 
0.5 ～1.0 [s].  

Because the time series is presumed (by hypothesis) to be the results of a deterministic 
process, each xn+1 is the result of a mapping. That is   
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The differentiation of the above equation is approximated as 
 

)j
jj

jj

j

j

j

j xf
xx

xx
dx

dx
dx

xdf
('

)(

1-

11 =
−

−
== ++    (3) 

 
Thus, the general expression of the Jacobian matrices and the orthogonal vectors 

),,2,1( miij =b can be obtained (14). The Lyapunov exponents iλ  against each 
embedding dimension i are then obtained as (22) (24) - (27) (30)  
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The degrees of freedom of the motion are estimated by the dimensions when curves of the 
largest Lyapunov exponents are saturated against the embedding dimensions.  
 

3. Generation of a Fuzzy Controller from Time Series Data during Stabilizing 
Control of an Inverted Pendulum by a Human Operator 

    We choose the pendulum angle θｔ, angular velocity θ'ｔ, the cart displacement Xｔ 
and its velocity Ｘ'ｔ as input variables, and the force Ｆｔ that moves the cart as output of 
the fuzzy controller, trying to identify the nonlinear characteristics of the human operator 
from the experimental time series data. Furthermore, we choose the combined variables θｔ
＋βθ'ｔ and Ｘｔ＋γＸ'ｔ as inputs so as to eliminate the complexity of the control rule 
table. The β and γ are the combination variables.  
  How to make the membership functions and the control rules are shown as follows (14) - (19). 
The values of β and γ are identified with the identification of membership functions and 
control rules by a trial and error method after repeating many simulations. In order to 
partition the data and determine the border of the data with the fuzzy sets under the assumed 
values of coefficient β and γ, for example, ＧＮＢ=10%,ＧＮＳ=25%,ＧＺＲ=30%,ＧＰＳ=25%,
ＧＰＢ=10% were chosen and the borders were denoted by DＮＢ_ＮＳ，DＮＳ_ＺＲ，DＺＲ＿ＰＳ，

DＰＳ_ＰＢ (Fig.2).   
  The labels of the membership functions with θ＋βθ' and Ｘ＋γＸ' were determined as 
follows. 
NB = minimum of the data: DMIN, NS =(DＮＢ＿ＮＳ＋DＮＳ＿ＺＲ)/2, ZR =average of the data: 
DAVE, PS = ( DＺＲ＿ＰＳ＋DＰＳ＿ＰＢ)/2 , PB = maximum of the data: DMAX.   
  The labels of the membership function with F are also determined as follows. 
NB= minimum of the data: DMIN, NMB =(NB + NS)/2, NS= (DＮＢ＿ＮＳ＋DＮＳ＿ＺＲ)/2, NMS= 
NS/2, ZR= average of the data: DAVE, PMS= PS/2, PS= (DＺＲ＿ＰＳ＋DＰＳ＿ＰＢ)/2，PMB= (PB 
+ PS)/2, PB= maximum of the data: DMAX (Fig.3). 
  Suppose that θｔ＋βθ'ｔ  is ＧＮＢ, Xｔ+γX'ｔ is ＧＺＲ, and Fｔ＋１ is ＧＮＳ, we count to 
the cell of label F= NS in the numbered grid to which θ+βθ'= NB and Ｘ＋γＸ'= ZR are 
given as inputs. The output is derived using the label frequencies and Eq.(5). 
 

( ) ( ) ( ) ( ) ( )
PBPSZRNSNB

PB4.4PS0.2ZR0.0NS0.2NB4.4
OUT ++++

⋅+⋅+⋅+⋅−+⋅−
=F    (5) 

 
We can determine the output label by using Fig.4 and construct the operator's control rule 
for balancing the inverted pendulum as shown Fig.5.  
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                   Fig.2 Membership function for input 
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              Fig.3 Membership function (Singleton)for output 
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  Fig.5 Rule for control of a pendulum on a cart (Ist trial NK01 of Human operator NK) 
 

4. Identification of Individual Skill of Human Operator and Generation of   
Fuzzy Controller   

4.1 Identification of individual skill and fuzzy control simulation 

    Figure 6 shows a model of an inverted pendulum on a cart. The differential equation of 
motion of this pendulum- cart system would be described as  
 

FXmLmLXM x =++− µθθθθ sincos 2  （6） 

θθµθθ θ sincos mgLXmLI =+−    （7） 

 
where m denotes the mass of pendulum, M denotes the mass of pendulum plus cart with 
equivalent mass of a human arm, L is the half-pendulum length, I is the inertial moment of 
pendulum about the supporting point, F is the force that moves the cart, μθ is the 
frictional coefficient of pendulum supporting point,μX  is the frictional coefficient between 
a cart and the rail. The coefficients μθ andμX are derived from the experiment.  
    Figure 7 shows a block diagram of stabilizing control simulation of the pendulum on a 
cart using the constructed fuzzy controller from human operator's time series data. The 
sampling time for control is 0.06[s] and the initial pendulum angle is 3.0[deg].   
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                Fig.6 Model of an inverted pendulum on a cart. 
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 Fig.7 Stabilizing control simulation of the pendulum using the constructed fuzzy controller 
from human operator's time series data. 
 

4.2 Identification of the skill and the individuality 

    Figure 8 shows the simulated results using the fuzzy control rules and the membership 
functions constructed from the experimental time series data, being compared with the 
experimental results, where (a) Human Operator AT's 1st trial, (b) Human Operator ME's 
1st trial, (c) Human Operator NK's 1st trial, and (d) Human Operator OT's 1st trial are 
shown. The simulated waveform and its phase plane representation of each trial exhibit the 
feature of those of each trial of the experiment. The simulated results exhibited the feature of 
those of each trial of each operator in the experiment. The result indicates that the rules 
identified for a fuzzy controller from time series data of each trial of each operator show 
well the human-generated decision- making characteristics during stabilizing control of an 
inverted pendulum on a cart. These waveforms showed the characteristics of the chaos and 
the large amount of disorder.  
    Figure 9 shows the individual skill of each operator captured in the entropy ratios of the 
simulation being compared with those of the experiment. The entropy ratio is the measure of the 
amount of disorder. 
    Figure 10 shows the individual skill of each operator captured in the estimated dimension i.e. 
the degree of freedom of the system behavior of the simulation being compared with those of the 
experiment. The degree of freedom of the system behavior was estimated by the dimension when 
the curves of largest Lyapunov exponents saturated against embedding dimensions.  
 

4.3 Skill and individuality captured in the Fuzzy rules and the membership 
functions  

    Figure 11 and Fig.12 show the membership functions of pendulum angle and its 
angular velocity, the membership function of cart displacement and its velocity, and the 
membership function (Singleton) for output force, which are identified from experimental 
time series data of Human Operator OT's 1st trial and ME's 1st trial. Figure 13 shows the 
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individual skill of each operator captured in fuzzy rules constructed from the experimental time 
series data. It is seen that the fuzzy rules depend on the individual operator and are not 
symmetrical.  
 

 
 Fig.8 Simulated results using the fuzzy control rules and the membership functions 
constructed from the experimental time series data, being compared with the experimental 
results. 
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Fig.9 Individual skill of each operator captured in the entropy ratios of the simulation being 
compared with those of the experiment.  
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 Fig.10 Individual skill of each operator captured in the estimated dimension i.e. the degree of 
freedom of the system behavior of the simulation being compared with those of the experiment.  
 

 
              Fig.11 Identified membership function (operator OT01) 
 

 

             Fig.12 Identified membership function (operator ME01) 
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   (a) Human operator AT01 
   β=0.0608，γ=0.2280 

        

 
     (b) Human operator ME01 
      β=0.0174，γ=0.0797 

        

 
  (c) Human operator OT01 
     β=0.0451，γ=0.1619 

    

 
  (d) Human operator ST01 
     β=0.0595，γ=0.6806

Fig.13 Individual skill of each operator captured in fuzzy rules constructed from the experimental 
time series data 

 

5. Conclusions 

    This paper investigated the identification of the individual difference of human 
operator's behavior from time series data and acquired individual skill of human operator. It 
also investigated the chaotic behavior of human operator and the possibility of the 
formation of complex system composed of the human operator and the control objects.  
The degree of freedom of motion of the system was estimated by the dimension when the curves 
of largest Lyapunov exponents saturated against embedding dimensions. It was found that the 
rules identified for a fuzzy controller from time series data of each operator showed well the human 
-generated decision -making characteristics with the chaos and the large amount of disorder. It was 
also found that the individual difference of the degrees of freedom and the amount of disorder 
in the system composed of the human operator and the control objects.  
    The author is grateful to the late former Prof. Kenichi Tanaka of Special school at 
Saitama Institute of Technology for his suggestions and encouragement. Sincere thanks are 
extended to Messrs K. Hashimoto, T. Ohta and K. Shimura for their help in carrying out this 
study when senior students at Saitama Institute of Technology.  
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