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1. Introduction     

There is an infinite variety of motions ranging from our daily activities to the exceptional 
movement of an athlete or a musician. Based on his extensive observation of child growth, 
Gesell (1945) stated some empirical rules. In particular, he noted that the development of 
motion progresses from a generally integrated state to an individualized state in which 
individual sections have specialized functions. He also noted that the number of degrees of 
freedom of the motion increases with development, and that periods of unstabilization and 
stabilization are repeated to advance development by taking advantage of such fluctuations 
well. Finally, he observed that chaos plays a very important role in motion. The human 
process of learning motion can also be studied by focusing on the degrees of freedom. When 
a person who normally writes with his or her right hand (i.e., their dominant hand) is asked 
to write with the left hand (i.e., their non dominant hand), the number of degrees of freedom 
of each joint is initially fixed; but, after training, each joint moves according to a peculiar 
phase relationship after training (Newell & Van Emmerik, 1989). This implies that we are 
rigid when we attempt a new motion, but become more relaxed after getting accustomed to 
it (Taga, 2002). 
Machinery and human beings are absolutely of a different nature at the present stage, but 
most research work on man-machine systems has dealt with the linear characteristics of 
human behavior (Kawazoe et al., 2008). As an example, many studies on control systems for 
stabilizing the inverted pendulum as an inherently unstable system have been presented. 
These studies focus on the linear characteristics of human behavior. There seem to be few 
studies and a number of unknowns regarding both the nonlinear characteristics of human 
behavior in an inherently unstable man-machine system as well as the learning process of 
human operators with objects difficult to control (Kawazoe et al., 2008, 2009). 
In order to stabilize an unstable system such as the inverted pendulum, strict judgment of 
the situation is required. Accordingly, it can be expected that the human operators exhibit 
complex behaviors or contingencies, that is, the mixture of regular and random actions 
intermittently.   
The behavior during stabilizing control of an inverted pendulum by a human operator 
exhibits a random-like or limit-cycle like fluctuation, and the stabilizing control by the 
human operator is robust against the disturbance. This may be because the limit-cycle-like 
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fluctuation produced by the digital PID computer controller, which means lineally unstable, 
is more robust against the disturbance than the lineally stable fluctuation according to the 
experiments. The limit cycle was very stable in the sense of nonlinearity, which means it is 
robust against the disturbance (Kawazoe et al., 1992, 1994, 1999, 2000, 2001a, 2001b).  
This chapter investigates the identification of the chaotic characteristics of human operation 
from the experimental time series data by utilizing fuzzy inference. It shows how to 
construct rules automatically for a fuzzy controller of each trial of each human operator. It 
tries to acquire the individual skill of each operator. Human operators in an experiment 
were trained so that they were skilled to some extent in stabilizing the pendulum by 
training, and the data of ten trials per person were successively taken for an analysis. The 
entropy is estimated from the time series data as a measure of the amount of disorder in a 
system, and the degrees of freedom of the motion are estimated by the dimensions when 
curves of the largest Lyapunov exponents are saturated against the embedding dimensions 
for quantifying the proficiency.  

2. Chaos-entropy analysis of human operator's skill during stabilizing control 
of an inverted pendulum on a cart  

2.1 Trials of stabilizing control of an inverted pendulum on a cart by a human operator 

Figure 1 shows the experimental setup. An inverted pendulum is mounted on a cart that can 
move along the line of a sliding rail of limited length. The pendulum is attached to the rail 
such that the pendulum rotates in one plane. A human operator manipulates the cart 
directly by hand. Although some time and intensive training are needed in order for a 
human operator to succeed in stabilizing the pendulum for 60 s, this task becomes less 
difficult after the first successful instance of stabilization. The human operators in the 
experiment were trained so that they were skilled to a certain extent in stabilizing the 
pendulum, and the data obtained in 10 successive trials per person were used for analysis. 
The angle that the pendulum makes with the vertical axis and the displacement of the cart 
were measured, and the derivatives and the force that moves the cart can be derived based 
on these quantities (Kawazoe et al., 2008, 2009). 
Figure 2 shows phase plane representations of the chaotic behavior of the inverted pendulum 
on a cart during stabilizing control by a human operator NK during the first trial after training.  
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Fig. 1. Stabilizing control of an inverted pendulum. 
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Fig. 2. Behavior of an inverted pendulum in a phase plane. 

2.2 Diagnosis of amount of disorder by entropy analysis 

Consider a hypothetical statistical system in which the outcome of a certain measurement 
must be located on a unit interval. If a line is subdivided into N subintervals, then we can 
associate a probability pi with the i-th subinterval containing a particular range of possible 
outcomes. The entropy of the system is then defined as follows: 

                                                        
1

ln
Nc

i i
i

S p p
=

= −∑ . (1) 

This quantity may be interpreted as a measure of the amount of disorder in the system or as 
the information necessary to specify the state of the system. If the subintervals are equally 
probable, so that pi = 1/N for all i, then the entropy reduces to S = ln N, which can be shown 
to be the maximum value. Conversely, if the outcome is known to be in a particular 
subinterval, then S = 0 is the minimum value. When S = ln N, the amount of further 
information needed to specify the result of a measurement is at a maximum, and, when S = 
0, no further information is required (Baker et al., 1996; Baierlein, 1997). We applied this 
formulation to the time series data by establishing N bins or subintervals of unit intervals 
into which the values of the time series data may fall. We define S as the net entropy 
calculated using Eq. (1) and S/( ln N) as the entropy ratio  (Kawazoe et al., 2008, 2009). The 
ratio of entropy to maximum entropy was estimated at the point at which the ratio saturated 
as the number of partitioned cells increased.  

2.3 Diagnosis of chaotic dynamics by Lyapunov exponent analysis 

The detection of the chaotic dynamics and the quantitative characterization of the chaotic 
dynamics when the model of the entire system is unknown requires the analysis of time 
series data. Although methods for dynamic analysis of time series data are currently under 
development, the following two-step process is commonly used at present: (1) 
reconstruction of the strange attracter of an unknown dynamic system from the time series, 
and (2) determination of certain invariant quantities of the system from the reconstructed 
attracter. It is possible to obtain the dynamics from a single time series without reference to 
other physical variables (Kawazoe, 1999, 2000). A rigorous mathematical basis of this 
concept has been presented by Takens (1981) and Mane (1981). 
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Since the attracter dimension is unknown for time series data and the required embedding 
dimension M is unknown, it is important that the reconstruction be embedded in a space of 
sufficiently large dimension to represent the dynamics completely. Thus, the dimension of 
the embedding space is increased by increments of one. The attractor is reconstructed, and 
its largest Lyapunov exponent is calculated. The process is continued until the largest 
Lyapunov exponent is saturated with respect to the embedding dimensions, and the 
dimension, i.e., the degrees of freedom of the system behavior, is estimated. The largest 
Lyapunov exponent can be obtained from time series data using an algorithm presented by 
Wolf et al. (1985). The Lyapunov exponent can be used to obtain a measure of the sensitivity 
under the initial conditions. This measure of sensitivity is characteristic of chaotic behavior. 
If the Lyapunov exponent is positive, nearby trajectories diverge, and so the evolution is 
sensitive to initial conditions and therefore chaotic. 
Consider the time series data x(t1), x(t2), …. Successive points in the phase space formed 
from time-delay coordinates can be written in vector form Xi as follows: 
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where the symbol τ denotes the time delay, and the symbol m denotes the embedding 
dimension. 

The choice of an appropriate delay τ is important to the success of the reconstruction. If τ is 

too short, then the coordinates are approximately the same and the reconstruction is useless. 

If τ is too large, then the coordinates are so far apart as to be uncorrelated. If the system has 

some rough periodicity, then a value comparable to but somewhat less than that period is 

typically chosen. Since there is no simple rule for choosing τ in all cases, τ is occasionally 

adjusted until the results appear to be satisfactory. Time τ is typically some multiple of the 

spacing between the time series points (Baker,1996). We chose 7 times the spacing between 

the time series points, i.e., 7 × 0.0293 s, as the value of τ because the calculated largest 

Lyapunov exponents were not too sensitive to τ and because the curves of the largest 

Lyapunov exponents versus embedding dimensions were smooth within a reasonable 

range, whereas the dominant period of the experimental time series data was 0.5 to 1.0 s. 

Since the time series is presumed (by hypothesis) to be the result of a deterministic process, 
each xn+1 is the result of a mapping. In other words, we have 

     1 ( )n nx f x+ = .  (3) 

The differentiation of the above equation is approximated as 
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Thus, the general expression of the Jacobian matrices and the orthogonal vectors 

b ( 1,2, , )ij i m= A  can be obtained (Kawazoe et al., 2008, 2009). The Lyapunov exponents iλ  for 

each embedding dimension i are then obtained as (Kawazoe et al., 2008,2009; Baker et al., 

1996; Baierlein,1971; Takens, 1981; Mane, 1981; Wolf et al., 1985). 

  
n 1

e
10

1
log ( 1,2,3, , )i

jn

i m
t t

λ −

=
= =− ∑ ijb A . (5) 

The calculated largest Lyapunov exponent converges at the end of the time series data as the 
embedded dimensions increase. The number of degrees of freedom of motion are estimated 
by the dimensions when the curves of the largest Lyapunov exponents are saturated with 
respect to the embedding dimensions. 

3. Generation of a fuzzy controller from time series data during stabilizing 
control of an inverted pendulum by a human operator 

Fuzzy control has a distinguishing feature in that it can incorporate experts' control rules 

using linguistic expressions. One of the main problems of fuzzy control is the difficulty in 

acquiring fuzzy rules and tuning the membership functions. The conventional control 

theory used to design controllers using models of controlled objects has been established. In 

addition, a number of studies have examined the design of fuzzy control systems using 

fuzzy models of controlled objects. 

To identify the nonlinear characteristics of the human operator from the experimental time 

series data, we choose the pendulum angle θt, angular velocityθ'ｔ, and the cart 

displacement Xt and its velocity X't as input variables and the force Ft that moves the cart as 

the output of the fuzzy controller. Furthermore, we choose the combined variables θt + ǃθ't 
and Xt + ǄX't as inputs so as to reduce the complexity of the control rule table, where ǃ and Ǆ 
are combination variables. 

The method used to obtain the membership functions and the control rules are described in 

the following. The values of ǃ and Ǆ are identified using the identification of membership 

functions and control rules by a trial and error method after repeating several simulations. 

In order to partition the data and determine the border of the data with the fuzzy sets for the 

assumed values of coefficient ǃ and Ǆ, for example, GNB = 10%, GNS = 25%, GZR = 30%, GPS = 

25%, and GPB = 10% were chosen (Fig.3), and the borders were denoted by DNB NS, DNS ZR, 

DZR PS, and DPS PB (Fig. 4). 

The labels of the membership functions with θ + ǃθ' and X + ǄX' were determined as 

follows: 

NB = minimum of the data: DMIN, NS = (DNB NS + DNS ZR)/2, ZR = mean of the data: DAVE, 

PS = (DZR PS + DPS PB)/2, PB = maximum of the data: DMAX. 

The labels of the membership function with F are also determined as follows: 

NB = minimum of the data: DMIN, NMB = (NB + NS)/2, NS = (DNB NS + DNS ZR)/2, NMS = 

NS/2, ZR = average of the data: DAVE, PMS = PS/2, PS = (DZR PS + DPS PB)/2, PMB = (PB + 

PS)/2, PB = maximum of the data: DMAX (Fig. 5). 

Suppose that θt + ǃθ't is GNB, Xt + ǄX't is GZR, and Ft+1 is GNS. Then, we count to the cell of 
label F = NS in the numbered grid to which θ + ǃθ' = NB and X + ǄX' = ZR are given as 
inputs. Figure 6 shows the fuzzy output grid numbers for generating a control rule. The 
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output is derived using the label frequencies of each grid for each trial and for each human 
operator and using the following equation (continues to page 334, Eq.(6))  
 

 

(a) Rates of combined variables with pendulum angle θt + ǃθ't 

 

(b) Rates of combined variables with cart displacement Ｘt ＋ ǄＸ' t 

 

(c) Rates of applied force F on the cart 

Fig. 3. Example of rates of inputs and output. 
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Fig. 4. Membership function for inputs. 
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Fig. 5. Membership function (singleton) for output. 
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Fig. 6. Fuzzy output grid number for generating a control rule. 
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Fig. 7. Conformity of output Fout. 
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Fig. 8. Rule for control of a pendulum on a cart (first trial NK01 of human operator NK). 
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                    ( ) ( ) ( ) ( ) ( )
OUT

NB NS ZR PS PB

NB NS ZR PS PB

4.4 2.0 0.0 2.0 4.4
F

− ⋅ + − ⋅ + ⋅ + ⋅ + ⋅= + + + + . (6) 

We can determine the output label using Fig.7 and construct the operator's control rule for 
balancing the inverted pendulum as shown in Fig.8. 
Figure 9 shows a block diagram of the stabilizing control simulation of the pendulum on a 
cart using the constructed fuzzy controller from the time series data of the human operator. 

Figure 10 shows the conformity of ′+θ βθ , and Fig. 11 shows the conformity of ′+ γX X , if 
θ + ǃθ' = 4.0 degrees and ′+ γX X  = 5.0 cm, as an example. In Fig. 10, the conformity of PS is 
determined to be 0.70, and that of PB is determined to be 0.30. In Fig. 11 the conformity of 
ZR is determined to be 0.73, and that of PS is determined to be 0.27. Using the fuzzy rule in 
Fig. 8, the following rules are found: 

IF and X X THEN F

else

IF and X X THEN F

else

IF and X X THEN F

else

IF and X X THEN F

θ βθ γ
θ βθ γ
θ βθ γ
θ βθ γ

′ ′+ = + = =
′ ′+ = + = =
′ ′+ = + = =
′ ′+ = + = =

PS ZR NS

PS PS NMS

PB ZR NMB

PB PS NMB

 

The output values are derived using max-min composition as follows. We use singleton 
fuzzification as a membership function of output. Figure 12 shows the process called 
“cutting” by MIN value. Figure 13 shows the process of composition by MAX value. Thus, 
the membership functions of output referred to as composite fuzzy output are obtained as 
NMB: 0.30, NS: 0.70, and NMS: 0.27. The output values are calculated using the center of 
gravity method as follows: 

  
OUT

9

1
9

1

i i
i

i
i

X Y

F

Y

=

=

⋅
= ∑

∑ , (7) 

where the term Xi is the X coordinate (-20.46, -13.37, -6.27, -3.14, -0.02, 3.09, 6.18, 14.72, 23.25) 
of the output membership function, Yi is the composite conformity, and i denotes an index. 
The result of fuzzy inference, F = -7.28, is obtained using composite fuzzy output in Fig. 16. 
The differential equation of motion of this pendulum-cart system is described as follows: 

     2cos sin xMX mL mL X Fθ θ θ θ μ− + + =$$ $$ $ $  (8) 

            cos sinI mLX mgLθθ θ μ θ θ− + =$$ $$ $  (9) 

where m denotes the mass of the pendulum; M denotes the mass of the pendulum, the cart, 
and a human arm; L is the half-pendulum length; I is the inertial moment of pendulum 
about the supporting point; F is the force that moves the cart, μθ is the frictional coefficient of 
the pendulum support point, and μX is the frictional coefficient between the cart and the rail. 
The coefficients μθand μX are derived from the experiment. The sampling time for control is 
0.06 s, and the initial pendulum angle is 3.0 degrees. 
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Fig. 9. Stabilizing control simulation of the pendulum using the constructed fuzzy controller 
from the time series data of a human operator. 
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Fig. 10. Conformity of ′+θ βθ . 
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Fig. 11. Conformity of ′+ γX X . 
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Fig. 12. Cutting by MIN value. 
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Fig. 13. Composition by MAX value. 

We choose the pendulum angle θｔ, angular velocity θ'ｔ, the cart displacement Xｔ and its 

velocity Ｘ'ｔ as input variables, and the force Ｆｔ that moves the cart as output of the fuzzy 

controller, trying to identify the nonlinear characteristics of the human operator from the 
experimental time series data. Furthermore, we choose the combined variables θｔ＋ǃθ'ｔ and 

Ｘｔ＋ǄＸ'ｔ as inputs so as to eliminate the complexity of the control rule table. The ǃ and Ǆ 
are the combination variables.  
The values of ǃ and Ǆ are identified with the identification of membership functions and 
control rules by a trial and error method after repeating many simulations.  
We can determine the output label and construct the operator's control rule for balancing 
the inverted pendulum.  

4. Chaos-entropy analysis and acquisition of individuality and proficiency 
using a fuzzy controller    

Figure 14 and Fig.15 show the membership functions of pendulum angle and its angular 
velocity, the membership function of cart displacement and its velocity, and the  
 

 

Fig. 14. Identified membership function (operator OT01) 
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Fig. 15. Identified membership function (operator ME01) 
 

 
(a) Human operator AT01 

┚=0.0608, ┛=0.2280 

 
(b) Human operator ME01 

┚=0.0174, ┛=0.0797 

 
(c) Human operator OT01 

┚=0.0451, ┛=0.1619 

 
(d) Human operator ST01 

┚=0.0595, ┛=0.6806 

Fig. 16. Individual skill of each operator captured in fuzzy rules constructed from the 
experimental time series data 

membership function (Singleton) for output force, which are identified from experimental 
time series data of Human Operator OT's 1st trial and ME's 1st trial. Figure 16 shows the 
individual skill of each operator captured in fuzzy rules constructed from the experimental time 
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series data. It is seen that the fuzzy rules depend on the individual operator and are not 
symmetrical. 
Entropy can be interpreted as a measure of the amount of disorder in the system, and the 
maximum entropy can be interpreted as a random process with a uniform probability. 
Figure 17 shows the entropy ratio vs. number of trial for human operators NK and Ot. 
According to the results for the estimated entropy ratio, the simulated time series data have 
a large amount of disorder. The estimated entropy ratio of motion increases with the 
increase in proficiency. 
Figure 18 shows the estimated dimension (degrees of freedom) of motion vs. the number of 
trials for operators NK and OT. The estimated number of degrees of freedom of motion 
increases with the increase in proficiency. 
Figures 19-1 and 19-2 show examples of simulated waveforms with the identified fuzzy 
controller and measured waveforms that are similar in appearance for eight human 
operators. 
 

 

                 (a) Human operator NK                                    (b) Human operator OT 

Fig. 17. Entropy ratio vs. number of trials by human operators (measured and simulated 
with the identified fuzzy controller). 
 

  

                      (a) Human operator NK                                (b) Human operator OT 

Fig. 18. Estimated dimension (degrees of freedom) of motion vs. number of trials by human 
operators (measured and simulated with the identified fuzzy controller). 
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               (a) Operator AT  
 

             (b) Operator HT

 

              (c) Operator NK 

 

           (d) Operator OT  

Fig. 19-1. Examples of simulated waveforms with the identified fuzzy controller and 
measured waveforms that are similar in appearance for eight human operators. 
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           (e) Operator KT  

 

          (f) Operator ME 

 

           (g) Operator ST  

 

           (h) Operator FT  
 

Fig. 19-2. Examples of waveforms simulated with the identified fuzzy controller and 
measured waveforms that are similar in appearance for eight human operators. 
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Figure 20 shows the entropy ratios for eight human operators and for simulations using an 
identified fuzzy controller to produce similar waveforms. 
Figure 21 shows the estimated dimension (degrees of freedom) for eight human operators 
and for simulations using an identified fuzzy controller to produce similar waveforms. 
The agreement between the simulated and experimental values for the number of degrees of 
freedom of motion and the entropy ratio is particularly good when the simulated waveform 
and the measured waveform are similar in appearance. 
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Fig. 20. Entropy ratios for eight human operators and for simulations using an identified 
fuzzy controller to produce similar waveforms. 
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Fig. 21. Estimated dimension (degree of freedom) for eight human operators and for 
simulations using an identified fuzzy controller to produce similar waveforms.  

5. Conclusion 

we have demonstrated that the fuzzy controller identified from the measured time series 
data for each trial for each human operator clearly exhibited the human-generated decision-
making characteristics, exhibiting chaos and a large amount of disorder. We have also 
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shown that the estimated number of degrees of freedom of motion increases and the 
estimated amount of disorder decreases with the increase in proficiency in the fuzzy control 
simulation. In addition, we have shown that the agreement between the experimental 
results and the fuzzy simulation for the number of degrees of freedom and for the entropy 
ratio of motion is particularly good when the measured waveform and the simulated 
waveform are similar in appearance. Accordingly, it was clarified that a simple fuzzy 
controller can be very useful for identifying the individuality and proficiency of a human 
operator when stabilizing an unstable system. 
At present, despite notable differences in the behaviors of machinery and human beings, 
most research on man-machine systems has dealt with the linear characteristics of human 
behavior. There appear to be few studies and a number of unknowns regarding both the 
nonlinear characteristics of human behavior in an inherently unstable man-machine system 
and the learning process of human operators for objects that are difficult to control  
(Kawazoe et al., 2008, 2009) . 
 The excessive number of degrees of freedom appears to provide considerable advantages. 
In several cases, a more flexible instrument, which is certainly much more challenging to 
work with, has undeniable advantages that provide better results. An experienced master 
will always prefer an instrument with a greater number of degrees of freedom over an 
instrument that is easier to use but constrains the worker. For example, a bicycle is harder to 
control than a tricycle, but anyone who has mastered a bicycle will probably never want to 
ride a tricycle again. The bicycle is preferred because in the hands of an experienced rider, it 
is more flexible and maneuverable and becomes more stable than the tricycle. Similarly, 
lightweight children's skates with their wide blades are less flexible and maneuverable than 
narrow-bladed speed skates. The practical problem of acquiring dexterity occurs in the early 
stages of skill development. This fascinating and extremely important area can move us 
closer to the deepest, concealed caches of knowledge about the human brain and its function 
(Bernstein, 1996). Real intelligence in autonomous robots appears to be expressed by 
dexterity in humans or other living creatures as complex systems, and research and 
development are required to realize intellectual autonomous robots. 
Confusion and doubt arise among individuals who are involved in robotics research and 
development for a long time because numerous robot control theories have been proposed. 
Dexterous dynamic actions required for humanoid biped robots, for example, are difficult to 
achieve through the current standard control strategy for humanoid robots based on the 
asymptotic convergence to the successive desired states with small fluctuations. Thus, a new 
and alternative approach is necessary. In the future, we would like to apply the simple 
nonlinear optimal control of various movements to make full use of instability as a source of 
driving force. 
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