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ABSTRACT

This paper investigates the physical properties of an old wooden racket and a modern

composite racket, predicting racket performamce in terms of the ball post-impact velocity

and the shock vibrations of racket handle. It is based on the the experimental identification

of the racket dynamics and the simple nonlinear impact analysis. The results show that the

restitution coefficient and the post-impact ball velocity of the composite racket is higher and

the amplitude of grip shock vibration smaller than those of the wooden racket. It also showed
that the shock vibrations remain longer with the composite racket.
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1. INTRODUCTION

Material composites have increased the degree of freedom of design and manufacturing
for sports products. At the current stage, very specific designs are targeted to match the
physical and technical levels of each user. However, ball and racket impact in tennis is an
instantaneous non-linear phenomenon creating large deformations in the ball/string and
vibrations in the racket. The problem is further complicated by the involvement of humans in

the actual strokes. Therefore, there are many unknown factors involved in the mechanisms
explaining how the materials of the racket frame influence the racket capabilities.

This paper investigates the physical properties of an old wooden racket and a modern
composite racket, predicting racket performamce in terms of the ball post-impact velocity
and the shock vibrations of racket handle. It is based on the experimental identification of
the racket dynamics and the simple nonlinear impact analysis. It also clarifies the mechanism

of a difference in performance of these two different type of tennis rackets.

2. EXPERIMENTAL IDENTIFICATION AND IMPACT ANALYSIS

The racket vibration characteristics were investigated using the experimental modal
analysis for a racket placed horizontally on a soft sponge (corresponding to mid-air hanging,
freely supported racket) and a racket with the handle held firmly by a hand. Figure 1 shows
the impact points of a test racket during experimental modal analysis using the impulse
hammer method[1][2]. It also shows the impact locations when hitting a ball. The main
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specifications and physical properties of the test rackets are shown in Table 1. The frame of
composite racket is made of carbon graphite. The racket geometry of wooden and composite
rackets are shown in Fig.2. Figure 3 shows an example of the frequency response functions
(compliances) and coherences when the racket was freely supported. Figure 3(a) shows the
results obtained when the racket frame was impacted and Figure 3(b) shows the results
obtained when the center of the string surface was impacted. Figure 4 shows the vibration
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Fig.2 Racket geometry(Wooden racket and composite racket).
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Fig.3 Measured frequency response function.
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Fig. 4 Racket vibration modes derived by an experimental modal analysis.

modal analysis results for freely supported rackets. The points that cross the horizontal axis
correspond to nodes of the frame vibration mode. The boundaries between the black and
white regions represent the nodal lines on the string surface.  Although the frame vibration
damping for the hand-held racket was remarkably larger than that for the freely supported

racket, there is no big difference in the modal shape.
The impulse could be approximately derived using a model assuming that a ball with a

concentrated mass #8 and nonlinear stiffness collides with the nonlinear spring of strings
supported by a rigid frame, where the measured restitution coefficient €8¢ inherent to the
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Fig.5 Predicted coefficient of restitution €r Fig.6 Predicted coefficient of restitution €r
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materials of ball/strings is employed as one of the souce of energy loss[3]. The contact time

Tc could be derived, if it is assumed that the contact time 7¢, which is not much affected
by the frame stiffness according to the experiment, is determined by the natural period of a
whole system composed of the mass of a ball, equivalent compound stiffness K¢ of a ball
and strings, and the reduced mass Mr of racket[4]-[7].

On the basis of the approximation of the force-time curve of impact as a half-sine pulse
and the application of its fourier transform to the experimentaly identified racket vibration
model, the initial amplitude of racket vibration due to impact can be derived. The amplitude
seems to be somewhat larger for the hand-held racket compared to the freely supported
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Fig.9 Predicted post-impact ball velocity Vs off the longitudinal axis.
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Fig.10 Predicted shock vibrations at the grip of a freely supported racket when a ball
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Fig.11 Predicted shock vibrations at the grip of a hand-held racket when a player hits
flat forehand drive(Impact velocity between a ball and racket head is 30 m/s).
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racket, there is no big difference in both cases. The energy loss due to the racket frame
vibration can be derived from the amplitude distribution of the velocity and the mass
distribution along a racket frame.

The coefficient of restitution €r between a ball and a racket can be estimated by
considering the energy loss due to large instantaneous deformation of the ball and strings

and the energy loss due to frame vibration. The restitution coefficient er with a hand-held
racket considering the reduced mass of a player’s arm is almost the same as that with a
freely supported racket|[2].

Figure 5 and Fig.6 shows the predicted coefficient of restitution €r on the racket face
when a player hits a coming ball with a velocity of 10 m/s, where a simple forehand ground
stroke swing model is used[6]. The restitution coefficient of a composite racket is higher than

that of a wooden racket, particularly at the top of the string face.

Figure 7, Fig.8 and Fig.9 shows the predicted post-impact ball velocity Vs when a
player hits a coming ball with a velocity of 10 m/s.  Figure 8 shows Vs at the longitudinal
axis, whereas Fig.9 shows Vs when a ball is hitted off the longitudinal axis. The post-
impact ball velocity Vs of the composite racket is higher than that of a wooden racket at the
top side of the string face.

It was shown that the predicted wave forms of the shock vibrations with the racket
handle and the wrist joint agrees fairly well with the measured ones during actual forehand
stroke by a player[7]. The Figure 10 shows the predicted shock vibrations of a grip 70 mm
from the grip end when a ball strikes the freely supported racket at the top side, the center
and the near side on the racket face. The shock vibrations are composed of the shock
acceleration and the racket vibration components, and each copmponent has its own time
history and magnitude depending on the impact velocity, impact location, grip location of

racket handle and the physical properties of a racket. It is seen that the shock vibration of

the wooden racket diminishes faster compared with composite racket. Figure 11 shows the
predicted shock vibrations at the grip of a hand-held racket when a player hits flat forehand
drive. The impact velocity between a ball and racket head is 30 m/s. The damping ratio of
a hand-held racket during actual impact is estimated as about 2.5 times those of the
one identified by the experimental modal analysis.

3. CONCLUSIONS

Although the restitution coefficient and the post-impact ball velocity of the composite
racket is higher and the amplitude of grip shock vibration is smaller than that of a wooden
racket, the shock vibrations remain longer with the composite racket.
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